9 research outputs found

    Technological Perspectives of Countering UAV Swarms

    Get PDF
    Conventional AD systems have been found less effective for countering UAVs and loitering munitions. Thishas necessitated the development of counter-UAV systems with different functionalities. A cluster of armed UAVsas swarm formations has further rendered the conventional AD systems far from effective, emphasizing the need to consider countering swarms as the most crucial element in new-generation aerial threat mitigation strategies. In this paper, the capabilities of UAV swarms and vital military assets exposed to such attacks are identified. To protect the vital assets from aerial swarm threats, ideal system characteristics of a counter-UAV (C-UAV) swarm system to overcome the challenges are discussed. Currently available acquisition & engagement technology is analyzed and the application of these systems to counter swarm applications is brought out. New requirements are discussed and a conceptual design of a layered system is derived which can handle a large spectrum of aerial threats including a swarm of UAVs. This system is expected to have a higher rate of engagement and can be designed with low-cost network-integrated systems

    A Predictive Explicit Guidance Scheme for Ballistic Missiles

    Get PDF
    A new approach to the design of ballistic missile guidance is presented in this paper. The proposed method uses the missile model to predict the likely impact point at every guidance cycle and apply course corrections based on the predicted impact point (PIP) deviations. The algorithm also estimates the in-flight thrust variation from nominal and accordingly updates the model to reduce the uncertainty in the prediction of the impact point. The performance of the algorithm is tested through 6-DOF simulation. The simulation results show excellent performance of the proposed guidance scheme in nominal & off nominal cases.Defence Science Journal, 2013, 63(5), pp.456-461, DOI:http://dx.doi.org/10.14429/dsj.63.257

    Synthesis of bio-based materials from agricultural residues for treatment of petrochemical wastewater

    Full text link
    4-Carboxybenzaldehyde (4-CBA), a major component of purified terephthalic acid wastewater, is toxic to living organisms and required to be removed before the discharge of treated wastewater in a natural water body. In this work, the adsorptive removal of 4-CBA was studied using bagasse fly ash (BFA), a waste product from the sugar industry. The adsorption capacity of BFA was compared with the commercially available adsorbent, granular activated carbon (GAC). A 4-factorial, 5-stage central composite design (CCD) was used to optimize 4-CBA removal and adsorption uptake by BFA using response surface methodology (RSM). The variables considered for the study were pH, adsorbent dose (m), initial concentration (Co) and time (t). At the optimum treatment conditions of pH = 4, m = 9 g/L, Co = 100 mg/L and t = 7.5 h, the removal efficiency and adsorption uptake of 4-CBA on BFA were found to be 79% and 9.9 mg/g, respectively. BET surface area of BFA was determined to be 284 m2/g. A kinetic study was performed using a first- and second pseudo-order model. The adsorption equilibrium data were fitted for various adsorption models. A positive value ΔH0 indicates that the adsorption process is endothermic. This study indicated that BFA is a cost-effective adsorbent for the removal of 4-CBA with high adsorption capacity and fast kinetics

    Resolving the etiology of atopic disorders by using genetic analysis of racial ancestry

    No full text
    corecore